Hi, How Can We Help You?
  • Address: Street Name, NY, 54785
  • Email Address: support@excellentresearchers.com

Blog

August 1, 2023

Evaluating Limits using Limit Theorems

Evaluating Limits using Limit Theorems

Limits
Evaluate the following limits. Use limit theorems, not ε – δ techniques. If any of them fail to exist, say so and say why.

1.  (a) limx→10
x
2 − 100
x − 10

 

(b) limx→10
x
2 − 99
x − 10
(c) limx→10
x
2 − 100
x − 9
(d) limx→10
f(x), where
f(x) = x
2
for all x 6= 10,
but f(10) = 99.
(e) limx→10

−x
2 + 20x − 100
2. limx→−4
x
2 − 16
x + 4
ln |x|
3. limx→∞
x
2
e 4x − 1 − 4x

 

4. lim x→−∞
3x
6 − 7x
5 + x
5x
6 + 4x
5 − 3
5. lim x→−∞
5x
7 − 7x
5 + 1
2x
7 + 6x
6 − 3
6. lim x→−∞
2x + 3x
3
x
3 + 2x – 1
7. lim x→−∞
5x + 2x
3
x
3 + x − 7

 

8. lim x→−∞
3x + |1 − 3x|
1 − 5x

 

9. limu→∞
u

u
2 + 1
10. limx→∞
1 + 3x

2x
2 + x
11. limx→∞

4x
2 + 3x − 7
7 − 3x
12. lim
x→1+

x − 1
x
2 − 1

 

13. Let
f(x) = (
x
2−1
|x−1|
if x 6= 1,
4 if x = 1.
Find Lim
x→1−
f(x).
14. . Let F(x) = 2x
2−3x
|2x−3|
.
(a) Find lim
x→1.5+
F(x).
(b) Find lim
x→1.5−
F(x).
(c) Does limx→1.5
F(x) exist? Provide a
reason.
15. limx→8
(x − 8)(x + 2
 

 

To evaluate the given limits, we will directly substitute the values into the expressions. If the result is of the form “∞” or “−∞,” then the limit is infinite. If we obtain an indeterminate form, such as 0/0 or ∞/∞, we will apply L’Hôpital’s rule to further evaluate the limit.

(a) lim(x→1−) (x + 1)/(x^2 − 1):

As x approaches 1 from the left (x → 1-), the expression becomes 0/0, which is an indeterminate form. We can use L’Hôpital’s rule:

lim(x→1-) (x + 1)/(x^2 − 1) = lim(x→1-) d/dx(x + 1)/d/dx(x^2 − 1) = lim(x→1-) 1/(2x) = 1/(2*1) = 1/2

(b) lim(x→0) sin(6x)/(2x):

As x approaches 0, the expression becomes 0/0, which is an indeterminate form. Again, we can use L’Hôpital’s rule:

lim(x→0) sin(6x)/(2x) = lim(x→0) d/dx(sin(6x))/d/dx(2x) = lim(x→0) 6cos(6x)/2 = 6cos(0)/2 = 6/2 = 3

(c) lim(x→0) sinh(2x)/(x*ex):

As x approaches 0, the expression becomes 0/0, which is an indeterminate form. We can use L’Hôpital’s rule:

lim(x→0) sinh(2x)/(xex) = lim(x→0) d/dx(sinh(2x))/d/dx(xex) = lim(x→0) 2cosh(2x)/(ex + xex) = 2*cosh(0)/(1 + 0) = 2/1 = 2

(d) lim(x→0+) (x/(0.01*ln(x))):

As x approaches 0 from the right (x → 0+), the expression becomes 0/(0.01*ln(0)), which is of the form 0/−∞. This is still an indeterminate form, so we can apply L’Hôpital’s rule:

lim(x→0+) (x/(0.01ln(x))) = lim(x→0+) d/dx(x)/d/dx(0.01ln(x)) = lim(x→0+) 1/(0.01*(1/x)) = lim(x→0+) 1/(0.01/x) = lim(x→0+) x/0.01 = 0/0.01 = 0

Therefore, the evaluated limits are: (a) lim(x→1-) (x + 1)/(x^2 − 1) = 1/2 (b) lim(x→0) sin(6x)/(2x) = 3 (c) lim(x→0) sinh(2x)/(xex) = 2 (d) lim(x→0+) (x/(0.01ln(x))) = 0

Order Custom Essay

You can get your custom paper by one of our expert writers.

This will close in 0 seconds

error: Content is protected !!